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Abstract

It is widely acknowledged that interdisciplinary science is the backbone of modern scientific
research. However such a curriculum is not taught, in part because there are few people to
teach it, and due to its inherent complexity and breadth. Mathematics, Engineering and Physics
(MEP) are at the core of such studies. To create such an interdisciplinary program, a unified
MEP curriculum is needed. This unification could take place based on a core mathematical
training from a historical perspective, starting with Euclid or before (i.e., Chinese mathematics),
up to modern information theory and logic. As a bare minimum, the fundamental theorems of

mathematics (arithmetic, algebra, calculus, vector calculus, etc.) need to be appreciated by
every MEP student.

At the core of this teaching are 1) partial differential equations (e.g., Maxwell’s Eqs), 2) linear
algebra of (several) complex variables, and 3) complex vector calculus (e.g., Laplace transforms).

If MEP were taught a common mathematical language, based on a solid training in
mathematical history [Stillwell, 2002], students would be equipped to 1) teach and exercise
interdisciplinary science and 2) easily communicate with other M, E, and P scientists.

The idea is to teach the history of the development of these core topics, so that the student
can fully appreciate the underlying principles. Understanding these topics based on their history
(e.g., the people who created them, what they were attempting to do, and their basic mind-set),
makes the subject uniformly understandable to every student. The present method, using
abstract proofs, with no (or few) figures or physical principles, lacks the intuition and motivation
of the original creators of these theories. Such a sterile approach is not functional for many
students, resulting in their poor intuition.
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Mathematics and its History (MH)

Figure: This is the first half of MH.
Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 3 / 71



Mathematics and its History (MH)

Figure: This is the second half of MH.
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WEEK 1 1.1.0

WEEK 1

1 Intro+timeline

3 streams of the Pythagorean theorem

2 Number Systems

3 Integers Z and Primes P ⊂ Z+

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 5 / 71



Mathematical Time Line 16-21 CE 1.1.3
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Lect1 NS: 1.1: Introduction: In the beginning . . . 1.1.1

The very first documented mathematics:

Chinese 5000 BEC (aka BC)

Babylonians (Mesopotamia/Iraq): integer pairs (a, c), p. 3 1800 BCE

Pythagorean “triplets” c2 = a2 + b2 540 BEC

Euclid 300 BEC, Archimedes 287-212 BCE

Vol of sphere p. 161, Area of Parabola p. 157
Hydrostatics, statics p. 242-4
Geometric series p. 182

Euclid in Alexandria during the reign of Ptolemy I

Egypt founded by Alexander the Great 322 BEC

Euclid’s Elements is (was?) the most influential works of mathematics.
Geometry every student is assumed to learn in High School

Alexandria Library burned → ‘All recorded knowledge destroyed’ 391 CE

1Part Number-Systems: Lecture.Week
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Chronological history of mathematics, by century 1.1.2

500th
BCE Chinese (quadratic equation)

180th
BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)

6th
BCE Py·thag′·o·re·an & tribe 580-500 BCE; Diophantus ≈200-285 BCE

4th
BCE Euclid 300 CE, Archimedes 287-212 CE

7th
CE Brahm′·a·gup·ta (negative numbers; quadratic equation)

15th Copernicus 1473-1543 Renaissance mathematician & astronomer

16th Tartaglia (cubic eqs); Bombelli (complex numbers); Galileo

17th Newton 1642-1727 Principia 1687; Mersenne; Huygen; Pascal; Fermat,
Descartes (analytic geometry); Bernoullis Jakob, Johann & son Daniel

18th Euler 1748 Student of Johann Bernoulli; d’Alembert 1717-1783; Kirchhoff;
Lagrange; Laplace; Gauss 1777-1855

19th Möbius, Riemann 1826-1866, Galois, Hamilton, Cauchy 1789-1857,
Maxwell, Heaviside, Cayley

20th Hilbert (R); Einstein; . . .
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Pythagorean Theorem Road Map: ⇒ Three “Streams” 1.1.4

The Pythagorean Theorem (PT) is the cornerstone of mathematics

PT is the mathematical fountain for these 3 streams

≈Five(?) century per stream:
1) Numbers:

6thBC Z+ ≡ N (positive integers), Q (Rationals)
5thBC Z Int, J irrationals

7thc Z zero

2) Geometry (e.g., lines, circles, spheres, toroids, . . . )

17thc Composition of polynomials (Descartes, Fermat)
Euclid’s Geometry + algebra ⇒ Analytic Geometry

18thc Fundamental Thm of Algebra

3) Infinity (∞ → Sets)

17-18thc F Taylor series, Functions, Calculus (Newton)
19thc R Real, C Complex 1851
20thc Set theory
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NS Lect 2.1 Stream 1: Number systems c1000 CE Ch. 3 2.1.1

Integers Z+,Z and rationals Q were the only “legal” numbers:

Brahmagupta 628 CE used zero, and negative integers Z− for debt.

9th century: the symbol 0 entered the Arabic number system

Cardinal numbers 5000 CE: Birds & Bees “count” cardinality

Positive Integers Z+, Integers Z

Rational numbers Q: Egyptians c1000 CE; Pythagoras 500 CE

Prime numbers

Fundamental Theorem of Arithmetic: p. 43;
Euclid’s formula for Pythagorean Triplets;
Greatest Common prime Divisor; Euclidean algorithm p. 41
Exs: (15=3*5, 30=2*3*5): gcd=5, lcd=3
Prime number Theorem
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Fundamental theorems for primes p. 43 2.1.2

Fundamental theorem of Arithmetic:
Every integer n may be written as a product of primes.

Every integer N may be written as a product of primes πk , of
multiplicity mk

N = Πkπmk

k

Examples:

27 = 33; 6 = 2 · 3; 297 = 33 · 11
1001 = 7 · 11 · 13
14 = π1 · π4

28 = 7 · 2 · 2 = π4 · π2
1

3881196 = 22 · 113 · 272 = π2
1 · π6

2 · π3
5
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Fundamental theorems for primes p. 43 2.1.3

Prime number Theorem: Density of primes2

π(N) ≡
N

∑

2

δ(πk) ≈ Li(N) ≡
∫ N

2

dξ

ln(ξ)

where δ(k) = 1 if k is a prime and zero otherwise.

Chebyshev said, and I say it again. There is always a prime
between n and 2n. p. 5853

Namely
πN+1 − πN ∝ ln(N)

2http://en.wikipedia.org/wiki/Prime_number_theorem
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Stream 2: Geometry Ch 2 & p. 37-8 2.1.4

Roles of Number theory vs. Geometry in Mathematics p. 38

Geometry is stabilizing and unifying
Number theory spur to progress and change
The Fundamental Thm of Algebra
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Fundamental Theorem of Algebra 2.1.5

Stream 2 defines early analytic geometry:

Every polynomial equation p(z) = 0 has a solution in the
complex numbers. As Descartes observed, a solution z = a
implies that p(z) has a factor z − a. The quotient

q(z) =
p(z)

z − a

is then a polynomial of one lower degree. . . . We can go on to
factorize p(z) into n linear factors.

An early observation on complex roots:

. . . d’Alembert (1746) observed that for polynomials p(z) with
real coefficients, if z = u + iv is a solution of p(z) = 0, then so is
its conjugate z∗ = u − iv . Thus the imaginary linear factors of a
real p(z) can always be combined in pairs with real coefficients.
p. 285Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 14 / 71



Stream 3: Infinity and irrational numbers Ch 4 2.1.6

Limit points, open vs. closed sets are fundamental to modern
mathematics

These ideas first appeared with the discovery of
√

2, and
√

n
https://en.wikipedia.org/wiki/Spiral_of_Theodorus

and related constructions (factoring the square, Pell’s Eq. p. 44)
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The fundamental theorem of calculus 2.1.7

Let A(x) be the area under f (x). Then

d

dx
A(x) =

d

dx

∫ x

f (η)dη

= lim
δ→0

A(x + δ) − A(x)

δ

and/or

A(b) − A(a) =

∫ b

a
f (η)dη

Stream 3 is about limits

Integration and differentiation (Calculus) depend on limits

Limits are built on open vs. closed sets
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Lect NS 3.1 Stream 1: Integers and Primes 3.1.1

Roman number system

The first abacus (Romans introduced concept to Chinese)

The positive integers Z+

The first use of zero (Brahmagupta 628 CE)

Rational numbers Q
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Why were/are integers important? 3.1.2

Pythagorean Motto: All is number

Integers were linked to Physics: i.e., Music and Planetary orbits

Today:

With the digital computer, digital audio, and digital video
coding everything, at least approximately, [is transformed ]
into sequences of whole numbers, [thus] we are closer than
ever to a world in which “all is number.” p. 16

Public-private key encryption is based on factoring large integers (very
hard)
Quantum Mechanics (quantization of states)

The identification of irrational numbers Q ⊂ R spoiled the concept of
integer perfection

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 18 / 71



Beauty of integers: Aristotle, Pythagoras 3.1.3

Strings

Chinese Bells & chimes

The Physics and math of musical instruments
Acoustic Transmission lines
Eigen-modes: Mathematics in Music and acoustics:

Guitar strings
Bells
Tuning forks
Organ pipes

Damping of eigen-modes → complex eigen-modes

Quantum states as normal modes

Electrons in a “box”
Radiation is a form of damping
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Pythagoreans 3.1.4

The Pythagoreans lived in Croton (Southern Italy)

“Musical principles played almost as important a part in the
Pythagorean system as mathematical or numerical ideas.” –Wikipedia
The Octave (2x in frequency); Perfect Third & Fifth; Harmonics

Vincenzo Galilei (father of Galileo) is known to have “discovered a
new mathematical relationship between string tension and pitch
. . . which paved the way to his son’s crucial insight that all physical
phenomena – leading to modern physics”

The Pythagoreans were the first to investigate musical scales as
rational numbers, particularly of small integers (e.g., 3/2).

Pythagoreans’ central doctrine:
”The physical world arises from the harmony of whole numbers.”3

3https://en.wikipedia.org/wiki/Music_and_mathematics
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Small but significant error in scales 12.5.1

The Pythagoreans argued that 12 perfect fifths (3
2) is 7 octaves

(

3

2

)12

6= 27 = 128

This ratio is in error by a significant 1.3% (129.745/128)

This argument is based on their belief in integral musical relationships.

How to count musical half-steps, spaning a musical fifth:

C , C#, D, D#, E , F , G

Today, each half-step is 12
√

2: ⇒ 12 steps is one octave (the
well-tempered scale)
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Acoustics, Music and Mathematics 3.1.4

BCE Pythagoras; Aristotle; stringed instruments and Integers

16th Mersenne, Marin 1588-1647; Harmonie Universelle 1636, Father of acoustics;
Galilei, Galileo, 1564-1642; Frequency Equivalence 1638

17th Properties of sound: Newton, Sir Issac 1686; First calculation of the
speed of sound; Hooke, Robert; Boyle, Robert 1627-1691;

18th Waves and Thermodynamics: Bernoulli, Daniel (#3); Euler; Lagrange;
d’Alembert;

19th Math, Sound and Electricity Gauss; Riemann; Laplace; Fourier;
Helmholtz; Heaviside; Bell, AG; Rayleigh, Lord (aka: Strutt, William)

20th Math and communication theory: Hilbert, David; Cambpell, George

Ashley; Noether, Emmy; Fletcher, Harvey; Bode, Henrik; Nyquist, Harry;
Dudley, Homer; Shannon, Claude;
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WEEK 2 4.2.0

WEEK 2

4 Primes πk ∈ P

5 Pythagorean triplets {a, b, c}
6 Greek number theory & GCD(a,b)
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Mathematical Time Line 16-21 CE 1.1.3
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NS Lect 4.2 Stream 1: Prime numbers πk 4.2.1

Every prime has only two factors: 1 and itself

πk |∞k=1 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 . . .}
Are most primes odd? All primes but 2 are odd

How many primes are divisible by 3? all but 3
Mersenne Primes: 2n − 1 (2n − 1 is not prime for n = 4, 6, 8, 9, 10)

What n’s give Mersenne Primes? n must be prime.

Fundamental theorem of arithmetic: Every integer N may be written
as a product of primes πk , of multiplicity mk

N = Πkπmk

k
Examples:

14 = π1 · π4

28 = 7 · 2 · 2 = π4 · π2
1

3881196 = 22 · 113 · 272 = π2
1 · π6

2 · π3
5

Gaussian primes: 3 + 7j

How to find primes? Sives

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 25 / 71



Fundamental theorem of Arithmetic p. 43 4.2.2

Every integer n may be written as a product of primes.

Examples: 27 = 33; 6 = 2 · 3; 297 = 33 · 11

Primes may be identified using a “sieve”

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 26 / 71



Sieves 4.2.3

Sieve of Eratosthenes:

Start with a list of N “elements” nk := {2, · · · , N}
The first list element n1 is the next prime πk

Highlight all nk := πk · nk

Delete all the highlighted elements
Repeated on the reduced nk

Figure: Sieve of Eratosthenes:

Euler’s sieve:
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Euler.27s_Sieve
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Greatest common factors GCD(n,m) 4.2.4

The GCD of two numbers is the largest common factor

If you factor the two numbers the GCD is “Obvious”

Examples:

gcd(13,11) = 1 The gcd of two primes is always 1
gcd(13*5,11*5) = 5 The common 5 is the gcd
gcd(13*10,11*10) = 10 The gcd(130,110) = 10 = 2*5, is not prime
gcd(1234,1024) = 2 (1234=2*617, 1024=210)

Co-primes (a ⊥ b) are numbers with no common factors (but 1)

Example: a = 7 ∗ 13, b = 5 ∗ 19 ⇒ (7 ∗ 13) ⊥ (5 ∗ 19)
I.E.: If a ⊥ b then gcd(a, b) = 1

a/ gcd(a, b) ∈ Z
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Riemann Zeta Function ζ(s) 4.2.4

Integers appear is the “roots” (aka eigenmodes) of ζ(s)

Basic properties (s = σ + iω)

ζ(s) ≡
∞

∑

1

1

ns
σ = ℜ(s) > 0

What is the region of convergence (ROC)?

The amazing Euler-Riemann Product formula:

ζ(s) =
∏

k

1

1 − πk
−s

=
∏

k

1

1 −
(

1
πk

)s =
∏

k

1

1 − 1
πs

k

=
1

1 − 2−s
· 1

1 − 3−s
· 1

1 − 5−s
· 1

1 − 7−s
· · · 1

1 − p−s
· · ·

Euler c1750 assumed s ⊂ R. Riemann c1850 extended s ⊂ C
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Plot of |ζ(s)| 4.2.6

Angle of Riemann Zeta function ∠ζ(z) as a function of complex z

Figure: ∠ζ(z): Red ⇒ ∠ζ(z) < ±π/2
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Physical meaning of each factor of ζ(s) 4.2.5

Series expansion

1

1 − x
= 1 + x + x2 + x3 + · · · ROC: |x | < 1

If time T is a positive delay, then from the Laplace transform

δ(t − T ) ↔
∫ ∞

0
δ(t − T )estdt = e−sT

Each factor of ζ(s) is an ∞ sum of delays

For example for π1 = 2, (T = ln(2), thus 2−2 = e−s ln 2)

∑

n

δ(t − nT ) ↔ 1

1 − 2−s
= 1 + e−sT + e−s2T + · · ·
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Lect NS 5.2 Pythagorean triplets c2 = a2 + b2
p. 43 5.2.1

Pythagoras assumed that [a, b, c] ⊂ Z (i.e., are integers)

This relationship has a deep meaning and utility

Proof of Pythagoras’s Theorem
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Pythagorean triplets: b =
√

c2 − a2 5.2.2

Applications in architecture and scheduling (quantized units)
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Unit-length jointed sides (e.g., bricks) 5.2.3

Integer property of Pythagoras’s Theorem:

Pythagoras required that the sides are ⊂ Z+ (e.g.: [3,4,5])

Note that 3 =
√

4 + 5 (i.e., a =
√

b + c)

Why?
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Euclid’s Formula for Pythagorean triplets [a, b, c] 5.2.4

1) t = p/q

2) a = p2 − q2

3) b = 2pq

4) c = p2 + q2

Proof I:

1) 2φ + η = π

2) η + Θ = π
3) ∴ φ = Θ/2

Proof II:

3) ∴ (x , y) = (1−t2, 2t)
1+t2

4) e iθ = 1+it
1−it

= cos(θ) + i sin(θ)

2) y(x) = t (x + 1)

1) x 2 + y 2 = c2

Y

(x , y)y

x X
φ

η

φ

y(x) = t (x + 1)

O
c2 = a2 + b2

c
=

p
2 +

q
2

b
=

2p
q

Θ a = p2 − q2

Proof III:

Choose p, q, N ⊂ Z+, with p = q + N, then c2 = a2 + b2 (p. 8)
Exp: N = 1, q = 1 : p = 2: a = 22 − 12 = 3, b = 2 · 1 · 2 = 4, c =

√
32 + 42 = 5
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Filling the the steps 5.12.5

Step 4 of Proof II was not shown for lack of room on the slide
Define (x , y) in terms of complex number ζ ≡ x + iy

Since ζ(Θ) lies on the unit circle (|ζ| = 1)

ζ(Θ) = eiΘ = cos(Θ) + i sin(Θ)

eiΘ(t) =
1 − t2 + i2t

1 + t2
=

(1 + it)(1 + it)

(1 + it)(1 − it)
=

(1 + it)

(1 − it)

The Greeks were looking for Pythagorean Triplets [a, b, c] ∈ Z+:

They composed a line II.2 & circle II.1.
Solving for ζ(Θ) gives formulas for [a, b, c], and
a) the quadratic equation, b) complex numbers, c) Euler’s formula
Only today can we fully appreciate all these details.
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Whats going on? 5.2.6

Assume that we have a glass bead on a wire circle at a position that
depends on the angle with τ as the time

Θ(τ) = 2πτ

The bead traverses the wire every second with a circular motion

eiΘ(τ) = ei2πτ = cos(2πτ) + i sin(2πτ)

The real and imaginary parts define a sinusoid (i.e., a pure tone)

The function eτ is the eigen-function of operator d/dτ

d

dτ
eaτ = aeaτ

Thus eaτ is the key when solving differential equations
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Whats going on? 5.2.7

Assume that we have a glass bead on a wire circle at a position that
depends on the angle

Θ(t) = 2πτ

where τ is time.

Then the bead will traverse the wire every second.

We may invert Θ(t) to find t(Θ)

1 + it = (1 − it)eiΘ

it
(

eiΘ + 1
)

= eiΘ − 1

thus: it(Θ) =
eiΘ − 1

eiΘ + 1
=

eiΘ/2 − eiΘ/2

eiΘ/2 + eiΘ/2
= i tan(Θ/2)

The slope of the line t varies as t = tan(πτ) (i.e., wildly)

This example shows the natural simplification of polar coordinates
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Pythagoras 5.2.8

Pythagorean “band” (i.e., a team of fellow mathematicians)

Based on integer relations
Work for hire
Discovery of

√
2 “story”

Pythagorean were destroyed by superstition (i.e., ignorance + fear):

Whether the complete rule of number (integers) is wise
remains to be seen. It is said that when the Pythagoreans
tried to extend their influence into politics they met with
popular resistance. Pythagoras fled, but he was murdered in
nearby Metapontum in 497 BCE. p. 16
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Lect NS 6.2 Stream 1: Greek Number Theory 6.2.1

The relations between the integers were assumed to be a reflection of
the physical world: All is number

This view followed from the musical scale and other observations

However the view broke given the diagonal of a unit-square:

d =
√

12 + 12 =
√

2 (1)

Question: Is
√

2 ⊂ Q?

They soon ”proved”
√

2 was not rational, thus
It was termed irrational 6Q (not a ratio of two integers)
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Taxonomy of numbers 6.2.2

The numerical hierarchy (i.e., “taxonomy”): From primes . . . complex

πk ∈ P ⊂ Z+ ⊂ Z ⊂ Q ⊂ J ⊂ R ⊂ C

Rational numbers Q subset of irrational numbers J: Q ⊂ J

Theoredoris Spiral of
√

n generates all
√

n, n ∈ Z+

https://en.wikipedia.org/wiki/Spiral_of_Theodorus

GCD with (n + 1)2 = n2 + 12, n = 1 · · ·
Continued Fractions (extended Euclidean algorithm)
Factoring the golden rectangle 1 × (1 +

√
2)

The first applications of 0, ∞ (Brahmagupta 7thc)

European text on algebra of negative numbers (Bombelli 16thc)

First calculations with
√

−1 (Bombelli 16thc); first accepted (1851)

Fields (functions of several variables: φ(t, x , · · · ))

Vectors (dimensional groups of fields: E(x , y , z , t) = [Ex , Ey , Ez ]T )
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Sprial of Theodorus 6.2.3

Figure: Sprial of Theodorus:
√

n + 1
2

=
√

n
2

+ 12
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Euclid’s algorithm (GCD) 6.2.4

Greatest common divisor GCD of two integers p. 42:

Let a0 = N, b0 = M

Recurse on index k = 0, 1, 2, . . .

ak+1 = max(ak , bk) − min(bk , bk) (2)

bk+1 = min(ak , bk) (3)

When ak = bk the GCD is ak

a0 = 30 = 2 · 3 · 5 b0 = 35 = 5 · 7

a1 = (7 − 2 · 3) · 5 = 5 b1 = (2 · 3) · 5 = 30

a2 = (2 · 3 − 1)5 = 25 b2 = 5, · · ·
ak = 20, 15, 10, 5 bk = 5, k = 3, 4, 5, 6

a6 = (2 − 1)5 = 5 b5 = 5 → done. ∴ GCD = 5

NOTE:GCD(25,75)=25 = 52, not 5: It returns πm
k
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Discuss Euclid’s Algorithm (GCD) vs. formula (PT) 6.2.5

Euclid’s formula (PT [a, b, c])

Euclid’s Algorithm (GCD)

See Page 473 (Problem 3.4.1)
GCD with subtraction replaced by division leads to the continued
fraction algorithm
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WEEK 3 7.3.0

WEEK 3

* Labor Day

7 Continued fractions & the GCD (e.g., π ≈ 22/7)

8 Geometry and irrational numbers:
√

n ∈ Q ∈ R

Approximating roots of
√

5

The Fibonacci sequence and its difference equation
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Lect 7.3 Stream 2: Continued Fraction Algorithm 7.3.1

A variation on the GCD is the Continued Fraction Algorithm CFA

CFA is useful for finding rational approximations

The CFA proceeds as the GCD, but with very different steps:
Given any starting number α: For k = 1, . . .; α0 = α:

1) nk = round(αk−1)
2) αk = 1/(αk−1 − nk); next k

Given a rational α, CFA terminates:

Examples: π ≈ 22/7 = (21 + 1)/7 = 3 + 1/7
π ≈ 355

113 ⇒ 1/
(

355
113 − 3

)

= 7.065 = 7 + 1/16

For irrational α (i.e, π) CFA does not terminate
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Rational approximations: Continued fraction expansion of π 7.3.2

Example of expanding π:

π = 3 + (π − 3) = 3 +
1

7.0625

= 3 +
1

7 +
1

16 +
1

−294 +
1

. . .

=: 3 + 1
∫

7 + 1
∫

16 + 1
∫

−294 +

Examples:
22
7 = 3 + 1/7 ≈ π + O(1.3 × 10−3)
355
113 = 3 + 1

∫

7 + 1
∫

16 ≈ π + O(2.7 × 10−7)
104348
33215 = 3 + 1

∫

7 + 1
∫

16 + 1
∫

−294 ≈ π + O(3.3 × 10−10)

Which is better, to fix() or to round()?
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Prime Rational approximations: 7.3.3

Reciprocate and subtract out the nearest prime:

π = 3 + (π − 3) = 3 +
1

7.0625

= 3 +
1

7 +
1

16 → 17 +
1

π? +
1

. . .

=: 3 + 1
∫

7 + 1
∫

17 + 1
∫

−π? +

The -293 term must be replaced by nearest π? (i.e., 271)

If so, what is the net error of the prime continued fraction?

Can you prove that the nearest integer converges faster (ROC)?

Is this a generalizaton of a base N representation?

What is the efficency (i.e., convergence) of base 2 vs. base πk?
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Real numbers R 7.3.4

Once irrational numbers were accepted, reals R must coexist

Stevin first introduces finite decimal fractions, i.e., Q 1585

R’s recognized when convergence are codified
http://www-history.mcs.st-and.ac.uk/HistTopics/Real_numbers_2.html

R’s were first defined between Hankel → Cantor c1870
Irrational numbers are a subset of reals

Integers are a subset of reals
Prime numbers are a special subset of integers

The details p. 526 must wait till Chap. 24 (Sets)
However today we all know well what they are: π, e,

√
π, etc.

This acceptance came slowly 16thc

R may be ordered (e.g., 4>3)
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Complex C numbers 7.3.5

Complex numbers C, like Rs, were accepted late c1851

One can define a complex number without the concept of a real
Gaussian integers(e.g., 3 + 4j) are an example
C cannot be ordered (e.g., Is 3 + 4i < 8 − 5i?)
Which is larger |3 + 4i | or |8 − 5i |?

Matrix algebra of complex numbers

a ≡ α + iβ ↔ A ≡
[

α β
−β α

]

s ≡ σ + iω ↔ S ≡
[

σ ω
−β ω

]

a · s = (ασ − βω) + i(βσ + αω) ↔ A · S =

[

ασ − βω βσ + αω
−(βσ + αω) ασ − βω

]
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Lect NS 8.3 Stream 2: Geometry 8.3.1

Euclid’s Ruler and Compass constructions

Not restricted to integers!
So why were the Greeks so focused on integers?

⊥ from point to line

Bisection of angles (example)

Circles and lines: basic geometry

Conic sections

This work is so much richer (easy) than integral relations (hard)

The use of integers placed a constraint on the problems, which drove
people to fundamentals
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Geometry and irrational numbers I 8.3.2

Spiral of Theodorus:

rplayer.files.wordpress.com/2009/03/spiral-of-theodorus.png

The nth triangle has lengths c =
√

n + 1, b =
√

n, a = 1

Thus n + 1 = n + 1 (since c2 = a2 + b2)

This spiral may be generated via a geometric argument
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Geometry and irrational numbers II 8.3.3

Construction in terms of rectangles (vs spirals from previous figure)

Page 46 of Stillwell

Figure: Starting from (yn, xn), recursively “grow” the square yn × yn into a rectangle.
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Geometry and irrational numbers III 8.3.4

The continued fraction expansion has properties is similar to the GCD

For example p. 48:

φ = 1 +
√

2 = 2 +
1

2 +
1

2 +
1

2 + . . .

= 2 + 1
∫

2 + 1
∫

2 + 1
∫

· · ·
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Fibonacci Sequence4
8.3.5

fn = fn−1 + fn−2

This is a 2-sample moving average difference equation

fn = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · ], assuming f0 = 0, f1 = 1:

Sol: (p. 1943, 1812):
√

5 fn ≡
(

1+
√

5
2

)n
−

(

1−
√

5
2

)n
→

(

1+
√

5
2

)n

limn⇒∞
fn+1

fn
= 1+

√
5

2

Ex: 34/21 = 1.6190 ≈ 1+
√

5
2 = 1.6180 0.10% error

Try Matlab’s rat(2 + sqrt(5)) = 4 + 1
∫

4 + 1
∫

4 + 1
∫

4 + · · · p. 28

4https://en.wikipedia.org/wiki/Fibonacci_number
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WEEK 4 9.4.0

WEEK 4

9 Pell’s Equation: n2−Nm2 = 1 (i.e., y2 = Nx2 + 1)
The GCD solution
The eigenvalue solution
Extensions of Pythagorean triplets: {n, m; N}

10 Geometry & the Pythagorean Theorem

11 Review for Exam I

12 No Class (Exam I)
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Mathematical Time Line 16-21 CE 1.1.3
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Pell’s Equation solution 9.4.1

The solution to Pell’s Eq (N = 2):

x2 − Ny2 = 1

Solutions xn, yn are given by a recursion (i =
√

−1)

[

xn+1

yn+1

]

= i

[

1 2
1 1

] [

xn

yn

]

starting from the trivial solution [x0, y0]T = [1, 0]T .

It follows that
[

xn

yn

]

= in

[

1 2
1 1

]n [

x0

y0

]

Then x2
n − 2y2

n = 1
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Pell’s Equation N = 2 9.4.2

Case of N = 2 & [x0, y0]T = [1, 0]
Note: x2

n − 2y2
n = 1, xn/yn →

√
2

[

x1

y1

]

= +i

[

1
1

]

= +i

[

1 2
1 1

] [

1
0

]

−12 + 2 · 12 = 1

[

x2

y2

]

= −1

[

3
2

]

= −1

[

1 2
1 1

] [

1
1

]

32 − 2 · 22 = 1

[

x3

y3

]

= −i

[

7
5

]

= −i

[

1 2
1 1

] [

3
2

]

−72 + 2 · 52 = 1

[

x4

y4

]

= +1

[

17
12

]

= +1

[

1 2
1 1

] [

7
5

]

172 − 2 · 122 = 1

[

x5

y5

]

= +i

[

41
29

]

= +i

[

1 2
1 1

] [

17
12

]

−412 + 2 · 292 = 1
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Pell eigenvalues 9.4.3

The general solution to Pell’s Eq may be found by eigenvalue analysis

The eigenvalues are given by

det

[

1 − λ N
1 1 − λ

]

=(1 − λ)2 − N = 0

(λ − 1)2 = N

thus

λ± = 1 ±
√

N

The solutions must be something like

[

xn

yn

]

= βn

[

1 N
1 1

]n [

λn
+

λn
−

]
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Simple expression for An by Diagonalization 9.4.4

Matrix A may be written in diagonal form as follows:

Let [Check out the Matlab command [E , Lambda] = eig(A)]

E =
1√
3

[

−
√

2
√

2
1 1

]

=

[

0.8165 −0.8165
0.5774 0.5774

]

This matrix has the following (unitary transformation) property

(E −1AE )n = Λn ≡
[

λ+ 0
0 λ−

]n

=

[

λn
+ 0
0 λn

−

]

Inverting this expression gives a simple expression for An

An =
(

EΛE−1
)n

= E

[

λn
+ 0
0 λn

−

]

E−1
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Solution to Pell’s Equation 9.4.5

The general solution is then (xn, yn)

[

xn

yn

]

= in

[

1 2
1 1

]n [

1
0

]

= in E

[

λn
+ 0
0 λn

−

]

E
−1

[

1
0

]

.

The relative “weights” on the eigenvalues are determined by (for
N = 2)

E−1

[

1
0

]

=
1

det(E )

[

e22 −e12

−e21 e22

] [

1
0

]

=

√
3

2
√

2

[

−1
√

2

1
√

2

] [

1
0

]

Show that

x2
n − 2y2

n = 1 (for N = 2)
xn, yn are complex integers
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Composition solution to Pell’s Equation 9.4.7

Prove that the following (x , y) pair satisfy Pell’s Equation

(x(t), y(t)) =
(Nt2 + 1, 2t)

Nt2 − 1
.

Proof:
x2 − Ny2 = (Nt2+1)2

−N(2t)2

(Nt2
−1)2 = (N2t4+2Nt2+1)−4Nt2

(Nt2
−1)2 = N2t4

−2Nt2+1
(Nt2

−1)2 = (Nt2
−1)2

(Nt2
−1)2 = 1

As before let t = p/q, p, q ∈ N.

(x(p/q), y(p/q)) =
q2

q2

(N(p/q)2 + 1, 2p/q)

N(p/q)2 − 1
=

(Np2 + q2, 2pq)

Np2 − q2

Thus in terms of (∀p, q such that q 6= p
√

N)

x2 − Ny2 =
(Np2 + q2)2 − 4Np2q2

(Np2 − q2)2
=

N2p4 − 2Np2q2 + q4

N2p4 − 2Np2q2 + q4
= 1

E.G. p = q = 1, z2 = x2 − Ny2 = N2
−2N+1

(N−1)2
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Euclid’s Formula for Pell’s Equation 9.4.8

Proof I:
1) x 2 − Ny 2 = 1

2) y = t(x − 1)

3) (x , y) = (Nt2+1,2t)
Nt2−1

4) t = p/q

X

Y

O

(17, 12)

(x , y)

y
=

t(
x

−
1)

(0, y)

(x , 0)

y
=

±
√

√

√

√

√

x
2 −1

N

Choose p, q, N ⊂ N, r = Np2 − q2

x = (Np2 + q2)/r , y = 2pq/r
tan(θ) = 2qp/(Np2 − q2)
Demo: EvalPellEq.m

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 65 / 71



Quadratic Equation solution 10.4.2

Quadratic equation as you learned it (99%?)

ax2 + bx + c = 0 → x± =
−b ±

√
b2 − 4ac

2a

Derivation by completion of square:
(

x + b
2a

)2
=

(

b
2a

)2
− c

a

Expanding on the left reduces to the quadratic:

x2 + bx +
�
�
��

(

b

2

)2

=
�
�
��

(

b

2

)2

− c

I’m suggesting you remember the green formula over the red one

To do: Determine radical expressions for cubics and quartics?
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Lect NS 11.1: Review of Number systems 11.5.1

Review of Homework solutions:

Pyth Triplets
Euclid’s Formula
Euclid Alg
Continued fractions
Role of acoustics in Greek theory
Irrational numbers
Modern applications of number theory
Status of mathematics by 500 CE
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Lect AE 12.5 Stream 2: Analytic Geometry 12.5.1

Prepare for Exam I

Introduction to algebraic systems via geometry

Composition of Polynomials: Descartes great discovery (p. 1132)

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics December 12, 2015 68 / 71



Lect NS 10.4 Stream 2: Geometry 10.4.1

Distance is related to length first defined as the “Euclidean length”

Extended definitions of length require:

line integrals (i.e., calculus:
∫ b

a
f (x) · dx) c1650

Complex vector dot products ||x ||2 =
∑

k x2
k , ||x − y ||

N-dimensional complex “Hilbert space,” (i.e., “normed” vector spaces)
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Geometry: Vector space results: D. Hilbert 1900 10.4.3

Schwartz inequality is related to the shortest distance between a point
and a line (is ⊥)

Given two vectors U, V the ⊥ may be found by minimizing the line
from the end of one, to the other:

min
α

||V − αU||2 = ||V ||2 + 2αV · U + α2||U||2 > 0

0 = ∂α (V − αU) · (V − αU)

= V · U − α∗||U||2

∴ α∗ = V · U/||U||2

The Schwarz inequality follows:

Imin = ||V − α∗U||2 = ||V ||2 − |U · V |2
||U||2 > 0

0 ≤ |U · V | ≤ ||U|| ||V ||
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Exam I 13.5.1

No class
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